A / B = k
, where A
and B
are variables represented as strings, and k
is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0
.
Example:
Given
a / b = 2.0, b / c = 3.0.
queries are:
a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return
[6.0, 0.5, -1.0, 1.0, -1.0 ].
The input is:
vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries
, where equations.size() == values.size()
, and the values are positive. This represents the equations. Return vector<double>
.
According to the example above:
equations = [ ["a", "b"], ["b", "c"] ], values = [2.0, 3.0], queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.
Analysis:
This is to find if two elements are connected. A typical graph practice.
After a path is found out, the answer to query is multiply of edges:
a/b=1,b/c=2,c/d=3, then a/d = a/b*b/c*c/d=6.0
class Edge{ String from,to; double weight; public Edge(String a,String b, double w){ from = a; to = b; weight = w; } public String toString(){ return from+"->"+to+":"+weight; } public int hashCode(){ return toString().hashCode(); } public boolean equals(Object b){ if(b instanceof Edge && toString().equals(b.toString())){ return true; } return false; } } class EdgeWeightedGraph{ Map<String,Set<Edge>> adj = new HashMap<String,Set<Edge>>(); public void addEdge(String a,String b, double weight){ Edge one = new Edge(a,b,weight); Edge two = new Edge(b,a,1.0/weight); if(adj.containsKey(a)){ adj.get(a).add(one); }else{ Set<Edge> s = new HashSet<Edge>(); s.add(one); adj.put(a,s); } if(adj.containsKey(b)){ adj.get(b).add(two); }else{ Set<Edge> s = new HashSet<Edge>(); s.add(two); adj.put(b,s); } } public boolean contains(String a){ return adj.containsKey(a); } public List<Edge> getPath(String a, String b){ Set<Edge> visited = new HashSet<Edge>(); List<Edge> path = new ArrayList<Edge>(); path = dfsGetPath(a,b,path,visited); return path; } private List<Edge> dfsGetPath(String start,String end,List<Edge> path,Set<Edge> visited){ if(start.equals(end)){ //List<Edge> result = new ArrayList<Edge>(); //result.addAll(path); return path; } if(adj.get(start)!=null){ for(Edge e:adj.get(start)){ if(visited.add(e)){ path.add(e); List<Edge> r = dfsGetPath(e.to,end,path,visited); if(r.size()>0){ return r; //stop further processing } path.remove(e);//next loop starting from same path path } } } return new ArrayList<Edge>(); } } public class Solution { public double[] calcEquation(String[][] equations, double[] values, String[][] queries) { //prepare double[] result = new double[queries.length]; EdgeWeightedGraph g = new EdgeWeightedGraph(); for(int i=0;i<values.length;i++){ g.addEdge(equations[i][0],equations[i][1],values[i]); } for(int i=0;i<queries.length;i++){ if(queries[i][0].equals(queries[i][1])&&g.contains(queries[i][0])){ result[i]=1.0; continue; } List<Edge> r = g.getPath(queries[i][0],queries[i][1]); if(r.size()==0){ result[i]=-1.0; }else{ result[i]=1; for(Edge e:r){ result[i]*=e.weight; } } } return result; } }
No comments:
Post a Comment